Plant Modeling Using Parallel Graph Grammar Languages
- Computer Graphics Final Project -

Andreea Francu

Department of Electrical and Computer Engineering

Rutgers University

{afrancu}@caip.rutgers.edu

http://www.caip.rutgers.edu/~afrancu

INTRODUCTION
Very impressive results were obtained by using L-systems. They have been introduced about thirty years ago and they have now become the standard way to generate realistic plant images in computer graphics. The idea is to attain realism by simulating mechanisms similar to ones that control the plant growth in nature.

The name “L-system” is short for “Lindenmayer System” after Aristid Lindenmayer[1], who introduced the notion of parallel rewriting grammars for the modeling of developing biological systems. L-Systems have a high “database amplification” (the possibility to generate complex structures starting from small databases). Objects generated by these algorithms are sometimes called “graftals”, a term introduced by Smith[4] to suggest that the similarity they exhibit is related to the geometry of fractals.

L-systems are parallel string rewriting mechanisms. They belong to a class of objects called grammars (or languages) which consists of an alphabet, a starting string and a set of rewriting rules (or “productions”). The grammars are similar to those of conventional formal languages except that productions are applied in parallel by simultaneously replacing all letters in a given word and there is no distinction between terminal and non-terminal symbols. The starting string, also known as the “axiom” is typically an element of the grammar’s alphabet, but this is not a requirement.

Self-similarity in plants arises because their growth involves repetition of the same simple, repetitive processes (e.g. branching). With L-systems, plants are described by words generated by such a grammar. Characters in these words are commands for turtle graphics system. Seymour Papert invented turtle graphics as a system for translating a sequence of symbols into the motions of an imaginary turtle moving around a plane. The path of the turtle can be described by a sequence of symbols representing the moves that the turtle makes as it moves around.

PLANT MODELING USING GRAMMARS

After a string has been generated by an L-system, it is scanned from left to right and the consecutive symbols are interpreted as commands which maneuver a turtle in three dimensions. The turtle is represented by its state, which consists of turtle position and orientation in the Cartesian coordinate system, as well as other attribute values, such as current color and line width. The orientation is defined by three vectors H, L and U indicating the turtle’s heading and the direction to the left and up. These vectors have unit length, are perpendicular to each other and satisfy the equation H x L = U. Rotations of the turtle can then be expressed by the equation [H’ L’ U’] = [H L U] R where R is the rotation matrix.

Segment symbols such as S, A, I and J in L-systems move the turtle forward by a distance d and cause a line to be drawn between the previous and the new position. Seven attributes symbols are used to control turtle orientation given an angle increment (. Symbols + and – turn the turtle left and right around the vector U, ^ and & pitch the turtle up and down around the vector L, and / and \ roll the turtle left and right around its own axis, the vector H. The symbol | is used to turn the turtle around 180(around the vector U regardless of the value of delta. Branches are created using a stack. [pushes the current state on the stack,] pops the current state from the stack and makes it the current state of the turtle. No line is drawn in this case, although the position of the turtle usually changes. The list of attributes symbols can be augmented to control color, diameter and length of segments, incorporate predefined surfaces and objects in the model, and perform other functions as required. Symbols without a specified interpretation are ignored by the turtle, which means that they can be used in the derivation process without affecting the interpretation of the resulting string.

IMPLEMENTATION

The program was coded using Java programming language. The program is an applet which the user can play with by using an Internet browser. Object-oriented paradigm was the base of the program. The program consists of the following modules:

1) Grammar parser

2) Grammar derivator

3) 3D Model generator

4) 3D Model visualizer

The grammar parser translates the user input into grammar internal format. The grammar derivator maintains the current derivation and constructs new derivations by substituting left-hand sides with their productions. The 3D model generator implements the turtle graphics engine and generates a 3D model with lines and polygons. The 3D model visualizer represents the 3D model using a perspective projection.

RESULTS

Aesthetically pleasing images begin to appear at a level of rewriting of 4 or 5. This depends also on the length of the successors in the production. Rendering time increases dramatically when the rewriting level is 5 or 6. Grammar complexity increases dramatically when describing angles, thickness, colors, textures, tropism.

The application has some predefined grammars and accepts new grammars as well. Here are some sample images and the grammars that generated them.

[image: image1.png][image: image2.png][image: image3.png][image: image4.png]
[image: image5.png]
3D GRAMMARS

FUTURE WORK

Further improvement of the applet is possible. The 3D model generator will be extended with commands for changing length of segments, setting absolute values, specifying textures. The 3D renderer will be improved by adding visible-surface determination, ilumination, and texture mapping.

REFERENCES
1. Przemyslaw Prusinkiewicz, Aristid Lindenmayer and James Hanan, Developmental Models of Herbaceous Plants for Computer Imagery Purposes, Proceedings of SIGGRAPH ’88 pp. 141-150.

2. Philippe de Reffye, Claude Edelin, Jean Francon, Marc Jaeger and Claude Puech, Plant Models Faithful to Botanical Structure and Development, Proceedings of SIGGRAPH ’88 pp. 151-158.

3. James D. Foley, Andries Van Dam, Steven K. Feiner and John F. Hughes, Computer Graphics, Principles and Practice, pp. 1027-1031, Addison-Wesley, 1996

4. Alvy Ray Smith, Plants, Fractals and Formal Languages, Proceedings of SIGGRAPH ’84 pp.1-8.
O->//'''''''''''''ta

t->?t

a->[[&sl!a]/////'[&sl!`a]///////'[&sl!``a]]

s->Sl

S->S/////s

l->['''&&{-f+f+f-|-f+f+f}]

O->''''''''''''''''''ULFFF

U->[+++G][---G]TU

G->+H[-G]L

H->-G[+H]L

T->TL

L->[-FFF][+FFF]F

F->FF-[-F+F+F]+[+F-F-F]

X->F-[[X]+X]+F[+FX]-X

F->FF

O->''''''''''''''p

p->i+[p+o]--//[--l]i[++l]-[po]++po

i->Fs[//&&l][//^^l]Fs

s->sFs

l->[''''{+f-ff-f+|+f-ff-f}]

o->[&&&d~/w////w////w////w////w]

